Качество воздуха и вентиляция
Качество воздушной среды помещений неразрывно связано с вентиляцией. Разработанная сегодня новая концепция ставит под сомнение решения прошлых лет и представляется более функциональной в деле обеспечения гигиеничности среды.
Качество воздуха и вентиляция
Качество воздушной среды помещений неразрывно связано с вентиляцией. Разработанная сегодня новая концепция ставит под сомнение решения прошлых лет и представляется более функциональной в деле обеспечения гигиеничности среды.
По оценкам Всемирной Организации Здравоохранения (ВОЗ) третья часть вновь строящихся или реконструируемых зданий может содержать загрязненный воздух. В этой связи Национальный институт охраны труда и здоровья (NIOSH) по результатам обследования более 1 000 случаев неудовлетворительного качества воздуха в помещениях (IAQ) составил следующий перечень основных источников загрязнения:
- 50% случаев - неэффективность самой вентиляционной системы (например, недостаток наружного воздуха, неэффективное распределение воздуха, показатели температуры и относительной влажности не соответствуют значениям, установленным для комфортного самочувствия, наличие загрязняющих источников непосредственно в системе);
- 30% случаев - наличие в воздухе специфических загрязняющих веществ (к примеру, формальдегида, паров растворителей, пыли и микробиологических составов);
- 10% - внешние источники загрязнения (например, выхлопные газы автотранспорта, пыльца растений, грибок, дым, пыль дорожных и строительных работ);
- в остальных 10% явную причину выяснить не удалось.
Если говорить о внутренних источниках загрязнения воздуха, то около 5% случаев связаны с подозрением на микробиологическое загрязнение, и еще в 5% можно говорить о загрязняющих веществах, выделяемых мебелью, элементами обстановки и тканями.
Проблемы неудовлетворительного качества воздуха в некоторых случаях имели тяжелые последствия для владельцев зданий из-за материальных компенсаций, потребованных персоналом предприятий вследствие различного рода заболеваний, причиной которых были признаны либо сами здания, либо установленные в них системы жизнеобеспечения. Агентство охраны окружающей среды ЕРА классифицировало неудовлетворительное качество воздуха (IAQ) в качестве одного из пяти основных факторов риска для общественного здоровья.
Пути проникновения загрязняющих веществ в здание
Есть факторы, оказывающие непосредственное влияние на работу вентиляции: давление ветра, гравитационный напор, негерметичность здания, и предусмотреть их весьма нелегко. Целый ряд других факторов обусловлен функциональной программой самой системы вентиляции: например, давление вентилятора, степень открывания/закрывания воздушных заслонок, регулируемых с пульта управления системами жизнеобеспечения здания (BMS) и проч. Динамика изменения концентрации загрязняющих веществ в зависимости от периодичности их выбросов и режима работы вентиляции приведена на трех графиках рис. 1.
Большинство загрязняющих веществ проникают внутрь здания и обратно вместе с воздухом. Воздух перемещается, как правило, от участков с высоким давлением на участки с низким давлением. Негерметичность перекрытий, открытые проемы вкупе с работающими вентиляторами, вытяжными коробами и проч. могут явиться причиной произвольного поступления в здание определенных объемов наружного воздуха.
Нежелательные поступления воздуха могут происходить через отверстия и трещины в наружных конструкциях здания из-за разрежения, создаваемого работой вентиляции. Поступающий снаружи воздух оказывается неконтролируемым и может переносить выхлопные газы автотранспорта, отработанные выбросы, пары углеводородов, дорожную пыль, запахи мусорных полигонов и др. Еще один фактор, заслуживающий пристального внимания, - это влажность и тепловая нагрузка на отопительно-вентиляционную систему, связанная с произвольно поступающим воздухом.
Не меньшее значение имеет разница давления воздуха в различных помещениях. Типичная ситуация представлена на рис. 2: центральное помещение имеет отрицательное давление по отношению к двум смежным комнатам, следовательно, именно туда устремляются потоки загрязненного воздуха, и этим вынуждены дышать работающие там люди. В частности, остановка вытяжного вентилятора или его отсутствие приводит к росту давления до показателей, превышающих давление в соседнем помещении. Поэтому перемещение воздуха между комнатами происходит не так, как предусмотрено проектом. Стабильная работа вытяжного вентилятора восстанавливает в обеих комнатах положительный режим давления по отношению к улице, в результате чего прекращается произвольное поступление воздуха из производственного в административные помещения (см. рис. 3). Кроме этого, необходимо тщательно проанализировать и другие возможные последствия разницы давления в помещениях. К примеру, в холодную погоду помещения, где по какой-либо причине давление становится положительным, могут испытывать проблемы с повышенной влажностью, появлением плесени, грибков и т. п.
Проблемы иного рода могут возникнуть, если целый ряд помещений или целое здание будут иметь отрицательное или положительное давление. Например, в летний период, когда заслонка наружного воздуха отопительно-вентиляционной установки HVAC остается закрытой на ночь, а вытяжки в туалетных и служебных комнатах продолжают работать, возникающее разрежение создает через незакрытые проемы и микротрещины приток теплого и влажного наружного воздуха, который становится причиной увлажнения здания или отдельного участка.
Традиционные схемы вентиляции
Основная концепция обеспечения надлежащей вентиляции помещения или здания в соответствии с требованиями стандарта ASHRAE 62-1989 или ему подобных представлена на рис. 4.
Схема наглядно показывает, что объем наружного воздуха QI, необходимого для нужд вентиляции, должен компенсироваться суммой значений объемов отводимого воздуха QE1 и QE2 плюс показатели эксфильтрации (свободной утечки) QEX, в основе которых поддержание в помещениях небольшого позитивного давления, не превышающего 13 Па. В аналитической форме это утверждение можно представить следующим уравнением:
QI = QE1 + QE2 + QEX.
Герметичность современных зданий, возведенных по новейшим технологиям, обеспечивает общий уровень эксфильтрации (свободной утечки) не выше 5% от производительности приточных вентсистем. Множество проблем, возникающих в зданиях с недостаточным притоком наружного воздуха либо ненадлежащим уровнем давления в помещениях, являются результатом ошибок в проектировании, когда разработчики не сумели заложить в проект отопительно-вентиляционной системы базовые параметры вентиляции помещений.
В последние годы наиболее распространенной является так называемая двухвентиляторная схема вентиляции, показанная на рис. 5. Такое решение позволяет обеспечить более благоприятный уровень давления на обслуживаемых участках и в целом по зданию. Однако, к сожалению, при такой схеме возникают проблемы иного рода. Одна из них заключается в том, что при определенных функциональных условиях (минимальные объемы поступающего наружного воздуха) воздух из смесительного воздуховода (plenum) может вытягиваться через тот же воздухозаборник наружного воздуха! Легко догадаться, к каким последствиям ведет такое решение - это произвольный приток наружного воздуха через имеющиеся в здании незакрытые проемы и негерметичные створы.
Выбор между "вторичной" и "первичной" вентиляцией
Во всех описанных случаях вентиляция наружным воздухом является вторичной системой, или подсистемой, обрабатывающей лишь небольшую часть первичного (наружного) воздуха, имеющую своей основной задачей поддержание в помещениях требуемых показателей температуры и относительной влажности.
В качестве "вторичной" система вентиляция может быть пассивной или активной. В первом случае система не требует никакого управления за исключением балансировки с целью обеспечения подачи минимальных объемов наружного воздуха.
Активная система, напротив, предусматривает установку одной или нескольких более или менее сложных регулировок, предназначенных для активной регулировки объемов наружного воздуха, подаваемого в здание.
Примерная схема активной системы, приведенная на рис. 6, показывает, насколько сложной она является. В ее составе имеется вентилятор для обеспечения отбора минимальных объемов наружного воздуха и соответствующий измерительный блок. Здесь есть также измерительные блоки на участках перезапуска и подачи воздуха в систему. В смесительном воздуховоде установлен датчик давления. Наконец, все заслонки имеют электропривод и запускаются с пульта управления системами жизнеобеспечения здания.
Следует особо сказать о работе вентилятора минимальных объемов наружного воздуха, который запускается, когда возникает потребность обеспечить подачу в здание некоторого минимального количества наружного воздуха. Двигатель этого вентилятора имеет несколько рабочих режимов.
Наиболее явными недостатками описанной системы активной вентиляции являются ее сложность в части управления и регулировки, высокая начальная стоимость, относительно невысокая надежность, а также необходимость нести определенные расходы по ее техническому обслуживанию. Чтобы избавиться от указанных недостатков впоследствии была разработана более современная концепция регулируемой механической вентиляции, которую назвали "первичной". Она в корне отличается от вышеописанных "вторичных" систем. Эта система уже не такая сложная и дорогая, как вторичная активная система, она оснащена надежным блоком управления, обеспечивающим непрерывное управление независимо от типа воздухообрабатывающей установки и режима тепловой нагрузки, в котором эта установка функционирует.
"Первичная" система регулируемой механической вентиляции реализуется посредством установки, оснащенной отдельной воздухообрабатывающей станцией, которая работает только в режиме обработки наружного воздуха и распределения его по вентиляционно-отопительным подстанциям, обслуживающим отдельные участки.
Либо - как альтернатива - наружный воздух может подаваться непосредственно в помещения при нейтральной температуре. Примерная схема первичной системы регулируемой механической вентиляции приведена на рис. 7.
Здесь представлена воздухообрабатывающая станция наружного воздуха и воздуховод, обслуживающий центральные кондиционеры различных участков.
Эта система показала себя с выгодной стороны в плане начальной стоимости для вновь возводимых зданий, где необходимо организовать регулируемое распределение наружного воздуха по группам центральных кондиционеров сходных типоразмеров. Рабочие характеристики в свою очередь также оказались весьма неплохими. Все проблемы, связанные с возможным замораживанием системы, фильтрованием и чистотой наружного воздуха, контролем показателей влажности в летний и зимний периоды, ограничиваются рамками одной лишь станции обработки наружного воздуха, забирающей на себя наибольший объем работ по техническому обслуживанию, которые в противном случае должны были бы охватывать систему в целом. В такой системе кроме обычных воздухообрабатывающих станций могут использоваться различные виды кондиционеров: вентиляторные конвекторы (fan coil), тепловые насосы с водяным кольцом, автономные кондиционеры и проч.
В системах с регулируемыми объемами наружного воздуха для помещений средних размеров в центральной установке кондиционирования вентилятор рециркуляции обычно не требуется, следовательно, нет нужды использовать сложные системы регулирования. Воздух можно распределять в помещениях посредством обычных регулируемых терминалов.
Несмотря на свою простоту, система весьма эффективна и может применяться в реконструируемых зданиях, когда имеющиеся воздухообрабатывающие станции недостаточно эффективны в силу того, что горловины воздухозабора наружного воздуха неправильно расположены либо сам воздухозабор не отвечает возросшим потребностям.
Нельзя переоценить и тот факт, что когда обработку наружного воздуха обеспечивает специальная станция, то высвобождается дополнительная мощность, направляемая на центральные кондиционеры.
В любом случае концепция описанной выше вентиляционной системы не только отвечает нормам, установленным для вентиляции помещений, но и предоставляет дополнительные ресурсы по отоплению и кондиционированию существующим системам кондиционирования, когда их работа становится малоэффективной в силу морального старения или перепрофилирования помещений.
Библиография
Ventilation practices and systems, приложение к номеру НРАС, Penton Publishing, апрель/май 1999.
Перепечатано с сокращениями из журнала RCI, № 3, 2000.
Перевод с итальянского С.Н. Булекова.
Научное редактирование выполнено Ф. А. Шилькрот - гл. специалистом МОСПРОЕКТ - 3,
тел. (095) 292-4419.
Статья опубликована в журнале “АВОК” за №4'2000
Статьи по теме
- Расчет годовых расходов энергии системами вентиляции и кондиционирования воздуха
АВОК №7'2006 - Проект «Бюрен»: сравнение естественной и механической приточно-вытяжной вентиляцией
АВОК №5'2021 - Вентиляция и внутренний микроклимат
АВОК №3'2012 - Проветривание квартир: архитектурно-планировочные решения и выбор оптимального режима
АВОК №2'2022 - Качество воздуха в аэропортах
АВОК №2'2000 - Вентиляция зданий — требуются новые знания
АВОК №4'2020 - Энергоэффективные системы вентиляции для обеспечения качественного микроклимата помещений
АВОК №5'2000 - Климатический комфорт в фитнес-центрах. Адиабатическое охлаждение с регенерацией теплоты
АВОК №1'2007 - Практические рекомендации по борьбе с коронавирусом для систем вентиляции
АВОК №4'2020 - Оценка и отношение к качеству воздуха владельцев зданий и сотрудников
АВОК №5'2000
Подписка на журналы