Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 107-91-50 ООО ИИП "АВОК-ПРЕСС"

АВОК ассоциированный
член
Summary:

Геотермальная система теплоснабжения с использованием солнечной энергии и тепловых насосов

Описание:

В статье дается краткий обзор строительства в России геотермальных систем теплоснабжения и рассказывается об опыте реализации в Краснодарском крае уникального проекта создания такой системы с использованием энергии солнечной радиации и тепловых насосов, целью которого была адаптация к российским условиям совместного применения российских и зарубежных энерготехнологий, работающих на нетрадиционных источниках энергии.

Геотермальная система теплоснабжения с использованием солнечной энергии и тепловых насосов

Теплоснабжение, организованное на основе использования горячей воды подземных водоносных слоев различной глубины, позволяет применять для отопления как тепло солнечной радиации, так и энергию других возобновляемых источников энергии. В статье дается краткий обзор строительства в России геотермальных систем теплоснабжения и рассказывается об опыте реализации в Краснодарском крае уникального проекта создания такой системы с использованием энергии солнечной радиации и тепловых насосов, целью которого была адаптация к российским условиям совместного применения российских и зарубежных энерготехнологий, работающих на нетрадиционных источниках энергии.

Геотермальные источники энергии вносят ощутимый вклад в обеспечение экологически чистой и рациональной энергией. К настоящему времени в мире построены геотермальные электростанции*  (ГеоЭС) общей установленной мощностью 8 912 МВт, в том числе энергоблоки единичной мощностью 110 МВт, а суммарная мощность геотермальных систем теплоснабжения достигает 28 000 МВт [1].

Россия обладает значительными запасами геотермальных ресурсов. Имеется опыт разработки и строительства ГеоЭС и геотермальных систем теплоснабжения. На Камчатке и Курильских островах много лет успешно эксплуатируется пять ГеоЭС, самая мощная из которых (50 МВт) – Мутновская – обеспечивает до 30 % всей потребляемой Камчат-кой электрической энергии [1]. Геотермальные системы теплоснабжения эксплуатируются на Камчатке, Курилах, в Дагестане, в Ставропольском и Краснодарском краях. Для этих целей ежегодно добывается до 30 млн м3 геотермальной воды с температурой 80–110 °С [2]. Также следует отметить, что наибольшее количество геотермальной воды добывается и используется в Краснодарском крае.

В Краснодарском крае эксплуатируется 12 геотермальных месторождений, где пробурено 79 скважин с температурой теплоносителя на устье 75–110 °С и тепловой мощностью до 5 МВт. На рис. 1 приведены значения тепловой мощности и годовой выработки тепловой энергии основных геотермальных месторождений Краснодарского края [3].

Тепловая мощность и годовая выработка тепловой энергии геотермальных месторождений Краснодарского края

Рисунок 1.

Тепловая мощность и годовая выработка тепловой энергии геотермальных месторождений Краснодарского края

В соответствии с программой, утвержденной законодательным собранием Краснодарского края, ведется работа по широкому внедрению геотермальных ресурсов в экономику региона. Разработаны концепция развития геотермального теплоснабжения, бизнес-планы геотермального теплоснабжения г. Лабинска, Усть-Лабинска, Горячего Ключа, Апшеронска, Анапы, пос. Мостовского [2], в основу которых заложен принцип высокоэффективного комплексного использования геотермальных ресурсов в энергообеспечении жилищно-коммунальных хозяйств, промышленных предприятий и объектов социально-бытового и лечебно-оздоровительного назначения. Наибольшим потенциалом обладают Вознесенское и Южно-Вознесенское месторождения (50 МВт), разделение которых носит условный характер.

С целью адаптации и отработки совместного применения российских и зарубежных энерготехнологий, использующих различные возобновляемые нетрадиционные источники энергии в Краснодарском крае, реализуется уникальный проект создания геотермального теплоснабжения пос. Розовый. В соответствии с бизнес-планом и проектно-сметной документацией система геотермального теплоснабжения пос. Розовый включает гелиоустановки для обеспечения горячего водоснабжения в летний период, когда геотермальные скважины не работают, накапливая гидропотенциал. Кроме того, в технологической схеме используется тепловой насос и фотоэлектрические модули.

Структурная схема геотермального теплоснабжения

Рисунок 2.

Структурная схема геотермального теплоснабжения

Структурная схема системы геотермального теплоснабжения показана на рис. 2. В нее входят:

– две геотермальные скважины (3Т, 4Т) с общим расчетным дебитом 1 718,4 м3/сут. с повысительными насосами и баками;

– магистральные тепловые сети от скважин до ЦТП (Ду = 150 мм) общей протяженностью 1,6 км;

– центральный тепловой пункт тепловой мощностью 5,28 МВт с теплообменным и насосным оборудованием;

– гелиотеплонасосная установка производительностью 8–20 м3/сут. при температуре ГВС 55 °С;

– распределительные тепловые сети диаметром 32–150 мм общей протяженностью 12 км;

– сливной трубопровод обработанной геотермальной воды Ду = 200 мм, длиной 0,465 км;

– насосная станция аварийного расхолаживания;

– сети электроснабжения 10–0,4 кВ;

– трансформаторная подстанция 150 кВт;

– АСУ системы геотермального теплоснабжения.

Особенностью геотермальных скважин является снижение давления на устье до 3 м вод. ст. в отдельные дни отопительного сезона. Предусмотрены насосы с частотно-регулируемым приводом, баки разрыва струи, приборы учета тепловой энергии. Конструкция скважинного сборно-разборного павильона позволяет производить капитальный ремонт скважины.

Центральный геотермальный тепловой пункт запроектирован в центре тепловых нагрузок. Подключение системы теплоснабжения к геотермальным скважинам выполнено по независимой схеме. Расчетные температурные графики потребителей поселка 90–60 °С определяются существующими системами отопления. Система теплоснабжения поселка двухтрубная с открытым водоразбором на горячее водоснабжение. Геотермальная вода после нагрева теплоносителя системы теплоснабжения поселка поступает в теплообменники теплиц, работающих с расчетным температурным графиком 60–30 °С. Охлажденный геотермальный теплоноситель сбрасывается в существующий пруд.

Проектом предусмотрена насосная станция аварийного расхолаживания. В здании ЦТП помимо технологического оборудования предусмотрены помещения для демонстрационного центра технологий использования ВИЭ.

Проектом предусматривается на первом этапе сброс обработанной геотермальной воды в пруд, а на втором – ее обратная закачка. Для восстановления внутрипластового давления месторождения в летнее время запроектирована гелиоустановка для горячего водоснабжения с тепловыми насосами «воздух-вода» для нагрева воды при пасмурной погоде. На рис. 3 представлена схема данной гелиотеплонасосной установки с фотоэлектрическим приводом насосов. Солнечные коллекторы расположены на навесе на высоте 3,5–4,2 м над землей. Для электроснабжения циркуляционных насосов гелио-установки запроектированы фотоэлектрические преобразователи установленной мощностью 1 кВт.

Схема гелиотеплонасосной установки

Рисунок 3.

Схема гелиотеплонасосной установки
1 – солнечные коллекторы
2 – фотоэлектрические преобразователи (ФЭП)
3 – драйкулеры
4 – насос контура ТН
5 – тепловой насос (ТН)
6 – насос ТН-теплообменник
7 – тепловычислитель
8 – расходомер
9 – термодатчик
10 – теплообменник ТН
11 – насос контура теплообменника
12 – насос ГВС
13 – бак-аккумулятор
14 – инвентор ФЭП
15 – электродвигатель
16 – насос гелиоконтура

При работе над этим проектом были решены следующие основные задачи:

– надежное обеспечение теплоснабжения объектов в условиях переменного дебита скважин;

– каскадное срабатывание теплового потенциала геотермального теплоносителя последовательно в системах отопления жилых домов и далее в теплицах;

– восстановление давлений скважин в межотопительный период за счет работы на горячее водоснаб-жение гелиотеплонасосной установки;

– устойчивое горячее водоснабжение в межотопительный период от комбинированной солнечной водонагревательной установки с тепловыми насосами, использующими тепло воздуха;

– выделение отдельных контуров теплоснабжения объектов по этажности и назначению (теплицы).

Литература

1. Поваров О. С., Томаров Г. В. Развитие геотермальной энергетики в России и за рубежом // Теплоэнергетика. – 2006. – № 3.

2. Шетов В. Х., Бутузов В. А. Геотермальная энергетика // Энергосбережение. – 2006 – № 4. – С.70–71.

3. Бутузов В. А. Повышение эффективности систем теплоснабжения на основе возобновляемых источников энергии. Дис… д-ра техн. наук. – М., 2004.

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Статья опубликована в журнале “Энергосбережение” за №3'2008



Реклама на нашем сайте
...
ООО «Арктика групп» ИНН: 7713634274 erid: 2VtzqvPGbED
...
Реклама / ООО «ИЗОЛПРОЕКТ» / ИНН: 7725566484 | ERID: 2VtzqwqnKQU
...
ООО "РУТЕКТОР" | ИНН: 2312103020 erid: 2VtzqvkEYLd
Яндекс цитирования

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Реклама на нашем сайте
...
ООО «РОСТерм Северо-Запад» / ИНН: 7801518005 / Erid: 2VtzqwY9YBJ
...
Реклама / ООО “ТПК Арекс” / ИНН: 7722489658 / erid: 2VtzqvwmHP3
...
реклама ООО "БДР ТЕРМИЯ РУС" / ИНН: 7717615508 / Erid: 2VtzqvBV5TD
BAXI
Онлайн-словарь АВОК!