Воздушный режим жилых зданий. Учет влияния воздушного режима на работу системы вентиляции жилых зданий
Тенденции современного строительства жилых зданий, такие как повышение этажности, уплотнение окон, увеличение площади квартир, ставят перед проектировщиками: архитекторами и специалистами в области отопления и вентиляции трудные задачи по обеспечению требуемого микроклимата в помещениях. Воздушный режим современных зданий, определяющий процесс обмена воздухом помещений друг с другом, помещений с наружным воздухом, формируется под воздействием многих факторов.
Воздушный режим жилых зданий
Учет влияния воздушного режима на работу системы вентиляции жилых зданий
Тенденции современного строительства жилых зданий, такие как повышение этажности, уплотнение окон, увеличение площади квартир, ставят перед проектировщиками: архитекторами и специалистами в области отопления и вентиляции трудные задачи по обеспечению требуемого микроклимата в помещениях. Воздушный режим современных зданий, определяющий процесс обмена воздухом помещений друг с другом, помещений с наружным воздухом, формируется под воздействием многих факторов.
Расчету воздушного режима зданий посвящены работы многих исследователей: В. Н. Богословского, М. М. Грудзинского, Е. Х. Китайцевой, В. А. Константиновой, М. А. Латышенкова, И. Ф. Ливчака, Н. Н. Разумова, И. А. Романовской, К. С. Светлова, Т. С. Сумбатьянц, Ю. А. Табунщикова, В. П. Титова, С. С. Требукова и др.
Многоэтажное здание представляет собой сложную аэродинамическую сеть, воздушные потоки в которой движутся по внутренним аэродинамическим трактам, определяемым следующими факторами:
- объемно-планировочным решением здания;
- воздухопроницаемостью элементов тракта;
- температурами наружного и внутреннего воздуха;
- направлением и скоростью ветра.
Для каждого конкретного здания архитектор должен учитывать влияние воздушного режима при решении вопроса о необходимой и достаточной плотности окон и перекрытий, различных дверей: входных в квартиры, входных в здание, в лестнично-лифтовые холлы, в незадымляемые лестничные клетки и т. д. Специалист по отоплению и вентиляции должен оценить необходимую дополнительную мощность системы отопления для возмещения потребности в теплоте на нагревание инфильтрационного воздуха и, главное, принять решение по виду и конфигурации системы вентиляции.
В каких случаях можно обойтись естественной вентиляцией, когда обязательна механическая вытяжка, при каких условиях требуется механический приток, можно ли многоэтажное здание обслуживать вытяжной системой с одним стволом по всей высоте или лучше его разбить по высоте на два, может ли система с вентилятором на стволе в наиболее холодный период работать на естественной тяге, какой режим считать расчетным для выбора мощности вентилятора? Эти и масса других проблем встают перед специалистами в связи с воздушным режимом жилого здания.
Если вопрос определения расходов инфильтрационного воздуха при плотных окнах отодвинулся сегодня на второй план, то проблема обеспечения качественной воздушной среды в жилье стоит очень остро.
В подавляющем большинстве случаев жилые здания оснащаются вытяжными системами вентиляции с естественным, реже с механическим, побуждением. Существует несколько схем организации каналов вентиляционных систем. В статье рассматривается наиболее часто применяемая для многоэтажных зданий система с общим магистральным каналом («стволом») и поэтажными ответвлениями («спутниками»), схема которой показана на рис. 1.
Места присоединения «спутников» к «стволу» называют узлами. Они образуются крестовинами или тройниками, смешивающими воздух «ствола» и «спутников».
Рисунок 1. (подробнее) Формирование воздушных потоков в многоэтажном здании с системой естественной вентиляцией |
Предпосылки к инженерной оценке воздушного режима
Система вентиляции при проектировании рассчитывается независимо от здания. Для систем естественной вентиляции расчетным считается режим, когда температура наружного воздуха равна 5 °C. Для систем механической вентиляции температура наружного воздуха игнорируется, т. к. естественное давление, как правило, не учитывается.
Независимость системы вентиляции от здания основана на требовании открытия форточки в расчетном режиме (душно – открой форточку), таким образом, аэродинамическое сопротивление от наружной среды до вытяжной решетки не учитывается. Кроме того, не всегда открытие форточки обеспечивает необходимый приток воздуха, а также, заметим, что открытие форточки не всегда возможно: при расположении здания на шумных транспортных магистралях открывать форточки нежелательно, а в зданиях повышенной этажности, начиная с 22 этажа, открывать окна и форточки не рекомендуется в целях безопасности. Как будет работать такая система вентиляции в течение года – предсказать без специальных расчетов сложно.
Однако в арсенале проектировщика практически нет ни инженерных методов, способных достаточно полно охватить картину формирования воздушного режима в многоэтажном здании, ни времени для углубленного изучения вопроса в каждом конкретном случае.
Существующие инженерные методы расчета потока наружного воздуха, попадающего в помещение за счет инфильтрации, направлены на оценку расхода воздуха через окна наветренного фасада для установления расчетной поверхности отопительных приборов. В [1] она рассчитывается для воздухопроницаемых элементов здания (окон, балконных дверей и т. д.) при разности давлений по обе стороны воздухопроницаемого элемента, определяемой по формуле:
DP = (H - h)•(rext - rint )•g + rext•v2•(cн - cз)•kдин /2 - Pint , (1)
где H – высота здания от уровня средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты, м;
h – расчетная высота от уровня земли до центра рассматриваемого окна, балконной двери, входной двери в здание и т. д., м;
rext, rint – плотности наружного воздуха и воздуха помещения соответственно, кг/м3;
cн, cз – аэродинамические коэффициенты, зависящие от конфигурации здания и положения ограждающей конструкции, принимаемые по [2];
kдин – коэффициент учета изменения скоростного давления ветра в зависимости от высоты здания, принимаемый по [2];
Pint – условно постоянное давление воздуха в здании, Па.
Из формулы (1) следует, что DP является разностью давлений в наружном и внутреннем воздухе, причем если давление в наружном воздухе понятно для расчета, то про давление во внутреннем воздухе ничего не известно.
Принятое здание для анализа работы системы вентиляции и распределения давлений
Для анализа работы системы вентиляции и распределения давлений в здании в течение отопительного периода был выбран 17-этажный жилой дом серии П-44, типовой план промежуточной секции которого представлен на рис. 2.
Рисунок 2. (подробнее) Технологическая схема мини-станции для подготовки питьевой воды малой производительности |
На каждом этаже секции находятся две двухкомнатные квартиры и по одной однокомнатной и трехкомнатной. Однокомнатная и одна двухкомнатная квартиры имеют одностороннюю ориентацию. Окна второй двухкомнатной и трехкомнатной квартир выходят на две противоположные стороны. Общая площадь однокомнатной квартиры 37,8 м2, односторонней двухкомнатной – 51 м2, двухсторонней двухкомнатной – 60 м2, трехкомнатной – 75,8 м2. Здание оснащено плотными окнами с сопротивлением воздухопроницанию 1 м2•ч/кг при разности давлений DPо = 10 Па. Для обеспечения притока воздуха в стенах комнат и на кухне однокомнатной квартиры установлены приточные клапаны фирмы «АЭРЭКО». На рис. 3 показаны аэродинамические характеристики клапана при полностью открытом положении и в прикрытом на 1/3 состоянии.
Рисунок 3. (подробнее) Аэродинамические характеристики приточного клапана: |
Входные двери в квартиры также приняты довольно плотными: с сопротивлением воздухопроницанию 0,7 м2•ч/кг при разности давлений DPо = 10 Па.
Жилой дом обслуживается системами естественной вентиляции с двухсторонним присоединением спутников к стволу и нерегулируемыми вытяжными решетками. Во всех квартирах (вне зависимости от их величины) установлены одинаковые системы вентиляции, т. к. в рассматриваемом здании даже в трехкомнатных квартирах воздухообмен определяется не нормой притока (3 м3/ч на м2 жилой площади), а нормой вытяжки из кухни, ванной комнаты и туалета (в сумме 110 м3/ч).
Расчеты воздушного режима здания были выполнены с учетом следующих параметров:
• температура наружного воздуха 5 °C – расчетная температура для системы вентиляции;
• -3,1 °C – средняя температура отопительного периода в Москве;
• -10,2 °C – средняя температура самого холодного месяца в Москве;
• -28 °C – расчетная температура для системы отопления при ветре со скоростью 0 м/с;
• 3,8 м/с – средняя скорость ветра за отопительный период;
• 4,9 м/с – расчетная скорость ветра для выбора плотности окон различных направлений.
Давление наружного воздуха
Давление в наружном воздухе складывается из гравитационного (первое слагаемое формулы (1)) и ветрового (второе слагаемое).
Ветровое давление больше на высокие здания, что в расчете учитывается коэффициентом kдин, который зависит от открытости местности (открытое пространство, низкая или высока застройка) и высоты самого здания. Для домов до 12 этажей принято считать kдин постоянным по высоте, а для более высоких сооружений увеличением значения kдин по высоте здания учитывают повышение скорости ветра по мере удаления от земли.
На значение ветрового давления наветренного фасада оказывают влияние аэродинамические коэффициенты не только наветренного, но и подветренного фасадов. Такое положение объясняется тем, что за условный ноль давления, Русл, принято абсолютное давление у подветренной стороны здания на уровне наиболее удаленного от поверхности земли воздухопроницаемого элемента, через который возможно движение воздуха (устье вытяжной шахты на подветренном фасаде):
Русл = Ратм - rн•g•Н + rн•v2•сз•kдин/2, (2)
где сз – аэродинамический коэффициент, соответствующий подветренной стороне здания;
Н – высота над землей верхнего элемента, через который возможно движение воздуха, м.
Полное избыточное давление, формирующееся в наружном воздухе в точке на высоте h здания, определяется разностью полного давления в наружном воздухе в этой точке и полного условного давления Русл:
Рн = (Ратм - rн•g•h + rн•v2•сз•kдин /2) - (Ратм - rн•g•Н +
+ rн•v2•сз•kдин /2) = rн•g (Н - h) + rн•v2 (с - сз) kдин /2, (3)
где с – аэродинамический коэффициент на расчетном фасаде, принимаемый по [2].
Гравитационная часть давления увеличивается с возрастанием разности температур внутреннего и наружного воздуха, от которых зависят плотности воздуха. Для жилых зданий при практически постоянной температуре внутреннего воздуха в течение всего отопительного периода гравитационное давление растет с понижением температуры наружного воздуха. Зависимость гравитационного давления в наружном воздухе от плотности внутреннего воздуха объясняется традицией относить внутреннее гравитационное избыточное (над атмосферным) давление к наружному давлению со знаком минус. Этим как бы выносится за пределы здания переменная гравитационная составляющая полного давления во внутреннем воздухе, и поэтому полное давление в каждом помещении становится постоянным на любой высоте этого помещения. В связи с этим Рint в [1] названо условно постоянным давлением воздуха в здании. Тогда полное давление в наружном воздухе становится равным
Рext = (H - h)•(rext - rint )•g + rext •v2•(c - cз)•kдин / 2. (4)
На рис. 4 показано изменение давления по высоте здания на разных фасадах при различных погодных условиях. Для простоты изложения будем называть один фасад дома северным (верхний по плану), а другой южным (нижний на плане).
Рисунок 4. (подробнее) Распределение давлений в наружном воздухе по высоте здания |
Внутреннее давление воздуха
Различные давления наружного воздуха по высоте здания и на разных фасадах вызовут движение воздуха, и в каждом помещении с номером i сформируются свои полные избыточные давления Рв,i. После того как переменная часть этих давлений – гравитационная – отнесена к наружному давлению, моделью любого помещения может служить точка, характеризуемая полным избыточным давлением Рв,i, в которую поступает и из которой уходит воздух.
Для краткости в дальнейшем полное избыточное наружное и внутреннее давление будем называть соответственно наружным и внутренним давлениями.
При полной постановке задачи о воздушном режиме здания основу математической модели составляют уравнения материального баланса воздуха для всех помещений, а также узлов в системах вентиляции и уравнения сохранения энергии (уравнение Бернулли) для каждого воздухопроницаемого элемента. Балансы воздуха учитывают расходы воздуха через каждый воздухопроницаемый элемент в помещении или узле системы вентиляции. Уравнение Бернулли приравнивает разность давлений по разные стороны воздухопроницаемого элемента DPi,j к аэродинамическим потерям, возникающим при прохождении потока воздуха через воздухопроницаемый элемент Zi,j.
Следовательно, модель воздушного режима многоэтажного здания может быть представлена как совокупность связанных друг с другом точек, характеризуемых внутренним Рв,i и наружным Рн,j давлениями, между которыми происходит движение воздуха.
Потери полного давления Zi,j при движении воздуха обычно выражают через характеристику сопротивления воздухопроницаемости Si,j элемента между точками i и j. Все воздухопроницаемые элементы оболочки здания – окна, двери, открытые проемы – можно условно отнести к элементам с постоянными гидравлическими параметрами. Значения Si,j для этой группы сопротивлений не зависят от расходов Gi,j. Отличительной чертой тракта системы вентиляции является переменность характеристик сопротивления фасонных частей, зависящих от искомых расходов воздуха по отдельным частям системы. Поэтому характеристики сопротивления элементов вентиляционного тракта приходится определять в итерационном процессе, в котором необходимо увязать располагаемые давления в сети с аэродинамическим сопротивлением тракта при определенных расходах воздуха.
При этом плотности воздуха, перемещаемого по вентиляционной сети, в ответвлениях принимаются по температурам внутреннего воздуха в соответствующих помещениях, а по магистральным участкам ствола – по температуре смеси воздуха в узле.
Таким образом, решение задачи воздушного режима здания сводится к решению системы уравнений воздушных балансов, где в каждом случае сумма берется по всем воздухопроницаемым элементам помещения. Число уравнений равно числу помещений в здании и количеству узлов в системах вентиляции. Неизвестными в этой системе уравнений являются давления в каждом помещении и каждом узле систем вентиляции Рв,i . Так как разности давлений и расходы воздуха через воздухопроницаемые элементы связаны между собой, решение находится с помощью итерационного процесса, в котором расходы сначала задаются, а по мере уточнения давлений корректируются. Решение системы уравнений дает искомое распределение давлений и потоков по зданию в целом и в силу своей большой размерности и нелинейности возможно только численными методами с применением ЭВМ.
Воздухопроницаемые элементы здания (окна, двери) связывают все помещения здания и наружный воздух в единую систему. Расположение этих элементов и их характеристики сопротивления воздухопроницанию существенно влияют на качественную и количественную картину распределения потоков в здании. Таким образом, при решении системы уравнений для определения давлений в каждом помещении и узле вентиляционной сети учитывается влияние аэродинамических сопротивлений воздухопроницаемых элементов не только в оболочке здания, но и во внутренних ограждениях. По изложенному алгоритму на кафедре отопления и вентиляции МГСУ была разработана программа расчета воздушного режима здания [4, 5], которая использована для расчетов режимов вентиляции в исследуемом жилом доме.
Как следует из расчетов, на внутреннее давление в помещениях влияние оказывают не только погодные условия, но и количество приточных клапанов, а также тяга вытяжной вентиляции. Так как в рассматриваемом доме во всех квартирах вентиляция одинаковая, в однокомнатной и двухкомнатных квартирах давление ниже, чем в трехкомнатной квартире. При открытых внутренних дверях в квартире давления в помещениях, ориентированных на разные стороны, практически не отличаются друг от друга.
На рис. 5 приведены значения изменения давлений помещений квартир.
Рисунок 5. (подробнее) Распределение давлений помещений по высоте здания |
Разности давлений на воздухопроницаемых элементах и потоки воздуха, проходящие через них
Потокораспределение в квартирах формируется под воздействием разностей давлений по разные стороны воздухопроницаемого элемента. На рис. 6, на плане последнего этажа, стрелками и цифрами показаны направления движения и расходы воздуха при различных погодных условиях.
Рисунок 6. (подробнее) Расходы воздуха, кг/ч, проходящие через приточные клапаны (в стенах), окна, квартирные двери и вытяжные решетки в плане 17-го этажа |
При установке клапанов в жилых комнатах движение воздуха направлено из комнат к вентиляционным решеткам в кухнях, ванных комнатах и туалетах. Эта направленность движения сохраняется и в однокомнатной квартире, где клапан установлен в кухне.
Интересно, что направление движения воздуха не изменилось при понижении температуры от 5 до -28 °C и при появлении северного ветра со скоростью v = 4,9 м/с. Эксфильтрации не наблюдалось в течение всего отопительного сезона и при любом ветре, что свидетельствует о достаточности высоты шахты 4,5 м. Плотные входные двери в квартиры препятствуют горизонтальному перетеканию воздуха из квартир наветренного фасада в квартиры подветренного фасада. Наблюдается небольшое, до 2 кг/ч, вертикальное перетекание: из квартир нижних этажей через входные двери воздух выходит, а в квартиры верхних – входит. Так как расход воздуха через двери меньше, чем допускается по нормам [3] (не более 1,5 кг/ч•м2), можно считать сопротивление воздухопроницанию 0,7 м2•ч/кг для 17-этажного здания даже избыточным.
Работа системы вентиляции
Возможности системы вентиляции проверялись в расчетном режиме: при 5 °C в наружном воздухе, безветрии и открытых форточках. Расчеты показали, что начиная с 14 этажа вытяжные расходы недостаточны, поэтому сечение магистрального канала вентблока следует считать для данного здания заниженным. В случае замены форточек на клапаны расходы снижаются еще примерно на 15 %. Интересно отметить, что при 5 °C вне зависимости от скорости ветра через клапаны поступает от 88 до 92 % удаляемого системой вентиляции воздуха на первом этаже и от 84 до 91 % на последнем этаже. При температуре -28 °C приток через клапаны компенсирует вытяжку на 80–85 % на нижних этажах и на 81–86 % на верхних. Остальной воздух поступает в квартиры через окна (даже с сопротивлением воздухопроницанию 1 м2•ч/кг при разности давлений DPо = 10 Па). При температуре наружного воздуха -3,1 °C и ниже расходы удаляемого вентиляционной системой воздуха и приточного через клапаны воздуха превышают проектный воздухообмен квартиры. Следовательно, необходимо регулирование расхода как на клапанах, так и на вентиляционных решетках.
В случаях полностью открытых клапанов при отрицательной температуре наружного воздуха вентиляционные расходы воздуха квартир первых этажей превышают расчетные в несколько раз. При этом вентиляционные расходы воздуха верхних этажей резко падают. Поэтому только при температуре наружного воздуха 5 °C расчеты выполнялись для полностью открытых клапанов во всем здании, а при более низких температурах клапаны нижних 12 этажей прикрывались на 1/3. Этим учитывалось то обстоятельство, что клапан имеет автоматическое управление по влажности помещения. В случае больших воздухообменов в квартире воздух будет сухим и клапан прикроется.
Рисунок 7. (подробнее) Распределение разности давлений на воздухопроницаемых элементах по высоте здания |
|
Рисунок 8. (подробнее) Распределение расходов воздуха через приточные клапаны и вентиляционные решетки по высоте здания |
|
Рисунок 9. (подробнее) Распределение расходов воздуха через входные двери в квартиры |
На рис. 7 показаны разности давлений на клапанах и входных дверях в квартиры, а на рис. 8 – расходы воздуха через клапаны, вентиляционные решетки и входные двери в квартиры.
Расчеты показали, что при температуре наружного воздуха -10,2 °C и ниже во всем здании обеспечивается избыточная вытяжка через систему вентиляции. При температуре наружного воздуха -3,1 °C расчетные приток и вытяжка выдерживаются полностью только на нижних десяти этажах, а квартиры верхних этажей – при близкой к расчетной вытяжке – обеспечены притоком воздуха через клапаны на 65–90 % в зависимости от скорости ветра.
Выводы
1. В многоэтажных жилых домах с одним на квартиру стояком системы естественной вытяжной вентиляции, выполненным из бетонных блоков, как правило, сечения стволов занижены для пропуска вентиляционного воздуха при температуре наружного воздуха 5 °C.
2. Запроектированная система вентиляции при правильном монтаже стабильно работает на вытяжку в течение всего отопительного периода без «опрокидывания» системы вентиляции на всех этажах.
3. Приточные клапаны должны обязательно иметь возможность регулирования для снижения расхода воздуха в холодное время отопительного периода.
4. Для снижения расходов вытяжного воздуха желательна установка автоматически регулируемых решеток в системе естественной вентиляции.
5. Через плотные окна в многоэтажных зданиях существует инфильтрация, которая доходит в рассматриваемом здании до 20% от расхода вытяжки и которая должна быть учтена в теплопотерях здания.
6. Норма плотности входных дверей в квартиры для 17-этажных зданий выполняется при сопротивлении воздухопроницанию дверей 0,65 м2•ч/кг при DР = 10 Па.
Литература
1. СНиП 2.04.05-91*. Отопление, вентиляция, кондиционирование воздуха. М.: Стройиздат, 2000.
2. СНиП 2.01.07-85*. Нагрузки и воздействия / Госстрой РФ. М.: ГУП ЦПП, 1993.
3. СНиП II-3-79*. Строительная теплотехника / Госстрой РФ. М.: ГУП ЦПП, 1998.
4. Бирюков С. В., Дианов С. Н. Программа расчета воздушного режима здания // Сб. статей МГСУ: Современные технологии теплогазоснабжения и вентиляции. М.: МГСУ, 2001.
5. Бирюков С. В. Расчет систем естественной вентиляции на ЭВМ // Сб. докладов 7-й научно-практической конференции 18–20 апреля 2002 г.: Актуальные проблемы строительной теплофизики / РААСН РНТОС НИИСФ. М., 2002.
Тел. (095) 257-2488
Статья опубликована в журнале “АВОК” за №6'2003
Статьи по теме
- Новый век ОВК: проблемы и перспективы
АВОК №3'2000 - Общеобменная вентиляция зданий
АВОК №3'2005 - Эффективность систем отопления и вентиляции зданий
АВОК №4'2003 - Энергоэффективность зданий. На какие планировочные площади здания следует ориентироваться
Энергосбережение №6'2017 - Воздушный режим высотного жилого здания в течение года Часть 1. Воздушный режим при естественной вытяжной вентиляции
АВОК №8'2004 - Воздушный режим высотного жилого здания в течение года Часть 2. Воздушный режим при механической вытяжной вентиляции
АВОК №1'2005 - Применение технологии чистой комнаты в операционных и помещениях полупроводникового производства
АВОК №6'2014
Подписка на журналы