Некоммерческое
партнерство
инженеров
Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике
(495) 984-99-72 НП "АВОК"

(495) 107-91-50 ООО ИИП "АВОК-ПРЕСС"

АВОК ассоциированный
член
...
Реклама ООО "Катюша" | ИНН 1659212383 | Erid: 2VtzquyHfbr
Summary:

Тепловая изоляция трубопроводов тепловых сетей

Описание:

Реализация программы энергосбережения в Российской Федерации в значительной степени определяется надежным и экономичным функционированием систем теплоснабжения в промышленности и ЖКХ. Тепловые сети являются одним из основных элементов систем централизованного теплоснабжения.

Тепловая изоляция трубопроводов тепловых сетей.
Современные материалы и технические решения

Реализация программы энергосбережения в Российской Федерации в значительной степени определяется надежным и экономичным функционированием систем теплоснабжения в промышленности и ЖКХ. Тепловые сети являются одним из основных элементов систем централизованного теплоснабжения.

Наиболее экономичным видом прокладки теплопроводов тепловых сетей является надземная прокладка. Однако с учетом архитектурно-планировочных требований, требований экологии в населенных пунктах основным видом прокладки является подземная прокладка в проходных, полупроходных и непроходных каналах. Бесканальные теплопроводы, являясь более экономичными в сравнении с канальной прокладкой по капитальным затратам на их сооружение, применяются в тех случаях, когда они по теплотехнической эффективности и долговечности не уступают теплопроводам в непроходных каналах.

Проектирование тепловых сетей всех способов прокладки осуществляется в соответствии с требованиями СНиП 2.04.07-86* «Тепловые сети». Требования к конструкциям тепловой изоляции и нормы плотности теплового потока от теплоизолированных трубопроводов в зависимости от диаметра трубопровода, температуры теплоносителя и вида прокладки (надземная или подземная) регламентируются СНиП 2.04.14-88 «Тепловая изоляция оборудования и трубопроводов» с изменением № 1.

Тепловая изоляция предусматривается для линейных участков трубопроводов тепловых сетей, арматуры, фланцевых соединений, компенсаторов и опор труб для надземной, подземной канальной и бесканальной прокладки.

При выборе материалов теплоизоляционных конструкций трубопроводов, прокладываемых в жилых, общественных и производственных зданиях и проходных тоннелях, следует учитывать требования норм проектирования на эти объекты в части пожарной опасности.

Наименование материала 1 2 3 4 5
Армопенобетон 50-1400 200+50 0,05 300 0,5
Пенополимер-минерал 50-500 200-250 0,047 150 1,2
Пенополиуретан 50-1000 60-80 0,03 130 0,3

1. Условный проход трубопровода, мм

2. Средняя плотность r, кг/м3

3. Теплопроводность сухого материала l, Вт/(м °С)

4. Максимальная температура применения, °С

5. Предел прочности при сжатии, МПа

Для изоляции арматуры, сальниковых компенсаторов и фланцевых соединений следует применять преимущественно съемные теплоизоляционные конструкции.

В качестве теплоизоляционного слоя в этих конструкциях наибольшее применение в практике находят теплоизоляционные изделия на основе минерального и стеклянного волокна, выпускаемые различными предприятиями по ГОСТ 21880-94, ГОСТ 9573-96, ГОСТ 10499-95 и Техническим условиям (ТУ) производителей.

Эффективными теплоизоляционными изделиями для прокладываемых в каналах трубопроводов тепловых сетей являются цилиндры из минеральной ваты и стекловолокна. Российскими производителями этой продукции являются

ЗАО «Минеральная вата» и Назаров-ский ЗТИ. Импортная продукция представлена цилиндрами фирм Rockwool, «Флайдерер-Чудово», «Парок», «Изовер». Преимуществом этих изделий является их формостабильность и технологичность при монтаже. Применение формостабильных теплоизоляционных изделий обеспечивает снижение трудозатрат при монтаже теплоизоляции тепловых сетей в каналах.

В конструкциях теплоизоляции подземных трубопроводов канальной прокладки с учетом возможного попадания в конструкцию капельной влаги рекомендуется применять только гидрофобизированные теплоизоляционные материалы. Для ограничения увлажнения волокнистой теплоизоляции при надземной и подземной канальной прокладке по теплоизоляционному слою устанавливается защитное покрытие из гидроизоляционных материалов. В отечественной практике в конструкциях с минераловатными и стекловатными утеплителями при прокладке в каналах используются стеклопластики по ТУ 6-48-87-92, ТУ 36.16.22-68-95, ТУ 6-48-00204961-14-90, изол, гидроизол, полимерные пленки и штукатурные покрытия. При надземной прокладке применяются преимущественно металлические покрытия из оцинкованной стали и алюминиевых сплавов.

Перспективным теплоизоляционным материалом для трубопроводов тепловых сетей с температурным графиком 95–70°C в проходных и непроходных каналах и систем горячего водоснабжения, прокладываемых в технических подпольях и подвалах зданий, является вспененный каучук, производимый фирмой L'Isolante K-Flex под фирменной маркой К-Flex. Изделия К-Flex марки ЕС и ST имеют предельную температуру применения 116°C, а при испытаниях на горючесть по ГОСТ 30244 относятся к группе Г1. Следует отметить, что эти изделия имеют разрешение № РРС 04-5986 Госгортехнадзора России на их использование на объектах, подконтрольных этому ведомству.

Для трубопроводов тепловых сетей подземной бесканальной прокладки применяются преимущественно предварительно изолированные в заводских условиях трубы с гидроизоляционным покрытием, исключающим возможность увлажнения изоляции в процессе эксплуатации.

В качестве основного теплоизоляционного слоя в конструкциях теплоизолированных трубопроводов бесканальной прокладки по СНиП 2.04.07-86* и СНиП 2.04.14-88 рекомендуется применять армопенобетон (АПБ), пенополимерминерал (полимербетон) и пенополиуретан (ППУ).

Применявшиеся ранее конструкции на основе битумоперлита, битумовермикулита, битумокерамзита, фенольных пенопластов (ФРП-1, ФЛ) по физико-техническим и эксплуатационным характеристикам уже не отвечают современным требованиям, в частности, нормам плотности теплового потока по изменению № 1 к СНиП 2.04.14-88. Эти материалы могут использоваться при соответствующем технико-экономическом обосновании в условиях, когда отсутствуют указанные выше, эффективные теплоизоляционные материалы.

Трубы с армопенобетонной изоляцией диаметром от 57 до 1 420 мм выпускаются ЗАО «Изоляционный завод» (Санкт-Петербург) по ТУ 4859-002-03984155-99. Современный армопенобетон характеризуется низкой плотностью (200–250 кг/м3) и теплопроводностью (0,05 Вт/(м•К)) при высокой прочности на сжатие (не менее 0,7 МПа). К преимуществам АПБ относятся его негорючесть, высокая температура применения (до 300°C), отсутствие коррозионного воздействия на стальные трубы, паропроницаемость гидрозащитного покрытия и, как следствие, долговечность. По данным ЗАО «Изоляционный завод» (Санкт-Петербург), более 1 000 км труб с изоляцией из армопенобетона, изготовленных на этом предприятии, находятся в эксплуатации уже более 25 лет. Предызолированные трубы с изоляцией из армопенобетона могут применяться во всем диапазоне температур теплоносителя как в водяных, так и в паровых тепловых сетях всех видов прокладки, включая подземную бесканальную, подземную в проходных и непроходных каналах и надземную прокладку.

Предварительно изолированные в заводских условиях трубы с тепловой изоляцией на основе ППУ и защитным покрытием из полиэтилена высокой плотности по ГОСТ 30732-2001 применяются для тепловых сетей подземной бесканальной прокладки с температурой теплоносителя до 130°C. Теплопроводы оборудованы системой оперативного дистанционного контроля технического состояния теплоизоляции, позволяющей своевременно обнаруживать и устранять возникающие дефекты.

К преимуществам теплопроводов с ППУ-изоляцией относят низкий коэффициент теплопроводности ППУ (0,032–0,035 Вт/(м•К)), технологичность при изготовлении и при монтаже теплопроводов, долговечность при соблюдении требований монтажа и эксплуатации.

Ограничения в применении ППУ-изоляции в тепловых сетях определяются допустимой температурой применения (130°C), горючестью, высокой дымообразующей способностью и токсичностью выделяемых при горении компонентов.

Предельная максимальная температура применения 130°C не позволяет использовать ППУ для изоляции трубопроводов водяных тепловых сетей, работающих по температурным графикам 150–70 и 180–70°C и паропроводов. Следует отметить, что ГОСТ 30732-2001 допускает применение ППУ при кратковременном повышении температуры до 150°C.

Пенополиуретан при испытаниях по ГОСТ 30244, в зависимости от рецептуры, относится к группам Г3 и Г4, что ограничивает возможность его применения для тепловой изоляции трубопроводов тепловых сетей, надземной прокладки и подземной в проходных и непроходных каналах и тоннелях.

Пенополимерминерал (полимербетон) разработан Институтом ВНИПИЭнер-гопром и более 20 лет применяется в конструкциях тепловой изоляции трубопроводов диаметром до 500 мм, изготавливаемых по ТУ 5768-006-00113537-2001. Характеризуется интегральной структурой, совмещающей функции теплоизоляционного слоя и гидроизоляционного покрытия. Имеет температуру применения до 150°C, при испытаниях на горючесть по ГОСТ 30244 относится к группе Г1.

Плотность теплового потока, Вт/м Толщина теплоизоляции,
м
Стоимость теплоизоляции, руб. Стоимость тепла,
руб.
Суммарная стоимость,
руб.
40 0,246 2 817 344 3 160
45 0,196 1 968 387 2 355
50 0,162 1 465 430 1 895
55 0,137 1 143 473 1 616
60 0,118 923 516 1 439
65 0,103 765 559 1 324
70 0,092 648 602 1 250
75 0,082 559 645 1 204
80 0,074 489 688 1 176
85 0,067 432 731 1 163
90 0,062 386 774 1 160
95 0,057 348 817 1 164
100 0,053 315 860 1 175
105 0,049 288 903 1 191
110 0,046 264 946 1 210
115 0,043 243 989 1 232
120 0,040 225 1 032 1 257
125 0,038 210 1 075 1 284
130 0,036 195 1 118 1 313
135 0,034 183 1 161 1 344
140 0,032 171 1 204 1 375
Расчетные данные в оптимальной точке
Толщина теплоизоляции, мм 62,47
Теплопотери в подающей трубе, Вт/м 62,562
Теплопотери в обратной трубе, Вт/м 26,813

В соответствии с требованиями СНиП 2.04.14-88 теплоизоляционные материалы, применяемые для тепловой изоляции трубопроводов бесканальной прокладки, должны иметь прочность на сжатие не менее 0,4 МПа.

Технические характеристики материалов, рекомендуемых к применению в качестве теплоизоляционного слоя в конструкциях тепловой изоляции трубопроводов бесканальной прокладки, приведены в табл.

При бесканальной прокладке трубопроводов расчетный коэффициент теплопроводности основного теплоизоляционного слоя в конструкции lk определяется с учетом возможного увлажнения при эксплуатации. Коэффициент, учитывающий увеличение теплопроводности теплоизоляционного материала при увлажнении, в настоящее время принимается по СНиП 2.04.14-88 и в зависимости от вида теплоизоляционного материала и влажности грунта по ГОСТ 25100 имеет значения в пределах 1,0–1,15. Следует отметить, что значения этих коэффициентов подлежат уточнению с учетом эффективности применяемых в современной практике гидроизоляционных покрытий. Так, для труб с ППУ-изоляцией в оболочке из полиэтилена высокой плотности и системой контроля влажности этот коэффициент может быть принят равным 1 независимо от влажности грунта. Для труб с армопенобетонной изоляцией и паропроницаемым гидроизоляционным покрытием и труб с пенополимерминеральной изоляцией с интегральной структурой, допускающих возможность высыхания теплоизоляционного слоя в процессе эксплуатации, коэффициент увлажнения, вероятно, может быть снижен до значений 1,05 в маловлажных и влажных грунтах и 1,1 в насыщенных водой грунтах по ГОСТ 25100.

При бесканальной прокладке трубопроводов тепловых сетей не рекомендуется применение теплоизоляционных конструкций на основе штучных теплоизоляционных изделий с устройством гидроизоляционного покрытия на месте монтажа для линейных участков трубопроводов.

Практические расчеты тепловой изоляции трубопроводов в канале и при бесканальной прокладке выполняются с удовлетворительной для практики точностью по инженерным методикам, учитывающим термическое сопротивление теплоизоляционного слоя и термическое сопротивление стенок канала и грунта, сопротивление теплоотдаче на границе теплоизоляции и стенок канала с воздухом в канале. Термическое сопротивление грунта рассчитывается по формуле Форхгеймера, учитывающей теплопроводность грунта в условиях эксплуатации, диаметр теплопровода и глубину его заложения. При двухтрубной прокладке учитывается взаимное тепловое влияние подающего и обратного теплопровода. В практике проектирования тепловых сетей при двухтрубной прокладке трубопроводов одного диаметра толщина теплоизоляционного слоя обратного трубопровода с учетом монтажных требований принимается равной толщине теплоизоляции подающего трубопровода.

Экономически оптимальная толщина теплоизоляционного слоя для заданного типа прокладки определяется по минимуму суммы капитальных затрат на устройство изоляции и эксплуатационных расходов с учетом стоимости используемых материалов и тепловой энергии в конкретном регионе. Стоимостные показатели рекомендуемых к применению теплоизоляционных материалов являются одним из определяющих факторов при оценке их сравнительной технико-экономической эффективности.

Для проведения расчетов экономически оптимальных толщин теплоизоляционного слоя и норм плотности теплового потока Институтом Теплопроект разработана компъютерная программа на базе программного пакета Excel c использованием элементов языка программирования Visual Basic. На рис. в качестве примера приведены результаты расчета оптимальной толщины теплоизоляционного слоя и оптимальной плотности теплового потока при двухтрубной бесканальной прокладке трубопроводов диаметром 159 мм.

В связи с изменяющейся конъюнктурой цен на тепловую энергию и теплоизоляционные материалы и значительной их дифференциацией по регионам РФ действующие нормы тепловых потерь по изменению № 1 к СНиП 2.04.14-88 для изолированных трубопроводов и оборудования в настоящее время уже не являются экономически оптимальными и подлежат пересмотру. Программа расчета в настоящее время используется при переработке СНиП 2.04.14-88 для определения норм плотности теплового потока с учетом современной номенклатуры и стоимости теплоизоляционных материалов и изделий. Следует отметить, что в 2002 году Институт ВНИПИЭнергопром при участии Института Теплопроект перерабатывает и СНиП 2.04.07-86 «Тепловые сети».

Введение в действие новых нормативных документов поможет проектным и монтажным организациям, а также потребителям квалифицированно использовать теплоизоляционные материалы в теплоизоляционных конструкциях, повысит энергоэффективность, надежность и долговечность конструкций тепловой изоляции трубопроводов тепловых сетей, что в конечном итоге обеспечит значительную экономию энергетических ресурсов и средств потребителей тепловой энергии.

Совершенствование нормативной базы и методов расчета тепловой изоляции трубопроводов тепловых сетей, расширение номенклатуры и повышение эксплуатационных характеристик применяемых теплоизоляционных материалов является реальным вкладом в реализацию программы энергосбережения в промышленности и ЖКХ.

Читать другие статьи по данной теме

- Тепловая изоляция промышленных трубопроводов

- Региональные нормы по тепловой изоляции промышленного оборудования и трубопроводов

- Трубопроводы с пенополиуретановой изоляцией для тепловых сетей бесканальной прокладки

- Расчет и проектирование тепловой изоляции оборудования и трубопроводов

- Тепловая изоляция оборудования и трубопроводов

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Статья опубликована в журнале “Энергосбережение” за №5'2002



Статьи по теме

Реклама на нашем сайте
...
ООО «Арктика групп» ИНН: 7713634274 erid: 2VtzqvPGbED
...
Реклама / ООО «ИЗОЛПРОЕКТ» / ИНН: 7725566484 | ERID: 2Vtzqw8FGZ4
Яндекс цитирования

Подписка на журналы

АВОК
АВОК
Энергосбережение
Энергосбережение
Сантехника
Сантехника
Реклама на нашем сайте
...
реклама ООО "БДР ТЕРМИЯ РУС" / ИНН: 7717615508 / Erid: 2VtzqvBV5TD
BAXI
...
реклама ООО «ВЕНТЕХ» / ИНН: 6825007921 / Erid: 2Vtzqux3SzJ
Онлайн-словарь АВОК!