Подземное аккумулирование тепла и холода в водоносных слоях
Подземное аккумулирование тепловой энергии позволяет реализовать летнее охлаждение с помощью зимнего холода, а зимний подогрев - с помощью летнего тепла.
Подземное аккумулирование тепла и холода в водоносных слоях
А. Л. Снайдерс, директор фирмы IF Technology, Нидерланды
О. А. Потапова, специалист фирмы IF Technology, Нидерланды
Вступление
В последние годы в Нидерландах широкое распространение получили установки подземного аккумулирования тепла и холода в водоносных пластах. Подземное аккумулирование тепловой энергии позволяет реализовать летнее охлаждение с помощью зимнего холода, а зимний подогрев - с помощью летнего тепла. Такие установки позволяют сэкономить порядка 50-75 % эксплуатационных затрат на тепло- и холодоснабжение по сравнению с традиционными установками (отопительными котлами и холодильными машинами).
Насколько нам известно, широкий круг российских специалистов еще мало знаком с этой энергосберегающей технологией. Учитывая особенности климата и актуальность вопросов энергосбережения, технология подземного аккумулирования тепловой энергии в водоносных слоях может представлять интерес и найти возможное применение в большом числе российских регионов.
Аккумулирование тепловой энергии в подземных водоносных пластах (Aquifer Thermal Energy Storage - ATES) - это новая нетрадиционная энергосберегающая технология для тепло- и холодоснабжения. Зимой холод имеется в изобилии, тогда как летом в наличии "бесплатное" тепло. Сезонное аккумулирование энергии - решение, позволяющее справиться с проблемой несинхронного спроса и предложения тепла и холода. Для тепло- и холодоснабжения зданий и сооружений требуется большое количество тепла и холода и, следовательно, большие объемы для аккумулирования. Поэтому создание специальных резервуаров для хранения теплоносителя с аккумулированным теплом требует больших затрат и сложно с технической стороны. В то же время, подземные водоносные пласты могут быть средой, подходящей для долгосрочного аккумулирования тепла и холода.
Назначение и принцип работы
Система подземного аккумулирования энергии состоит из двух скважин, через которые откачивается или закачивается вода из водоносного слоя, являющегося аккумулирующей средой. Одна скважина используется для аккумулирования тепла, другая - холода. Скважины находятся на расстоянии нескольких десятков метров друг от друга, исключающем взаимное влияние теплого и холодного "колоколов" и наземно соединены между собой трубопроводом с включенным туда теплообменником.
Годовой цикл схематически можно представить состоящим из 2 ситуаций:
- Лето. Холод (ранее запасенный) из холодной скважины используется для холодоснабжения потребителя. Вода из водоносного слоя с температурой 7-10°С откачивается из холодной скважины и в теплообменнике отдает холод потребителю (например, в систему кондиционирования воздуха). После этого уже с более высокой температурой она закачивается обратно в водоносный пласт через теплую скважину. Таким образом, по мере подачи холода потребителю сокращается запас холода вокруг холодной скважины, но одновременно создается запас тепла в теплой скважине.
- Зима. Как только у потребителя возникает потребность в тепле, направление процесса меняется: теплая вода откачивается из теплой скважины и после отдачи тепла в теплообменнике закачивается в водоносный пласт через холодную скважину. Теперь вокруг холодной скважины растет запас саккумулированного холода. Таким образом, осуществляется годовой цикл зарядки-разрядки тепла и холода.
В большинстве систем температура закачиваемой воды зимой составляет 6-9°С, а летом 15-25°С, то есть можно говорить об аккумуляции низкопотенциального тепла и холода.
Температурные уровни аккумулирования энергии в реализованных проектах приведены в табл. 1.
Таблица 1 Температурные уровни аккумулирования энергии в реализованных проектах |
||||||||||||||||||||||
|
Виды систем и потребители
История развития и внедрения систем сезонного аккумулирования тепловой энергии на протяжении последних 10-15 лет характеризовалась переходом от простых к более комплексным интегрированным схемам, где процессы тепло- и холодоснабжения зданий и сооружений оптимизированы и увязаны с источниками энергии, в том числе и нетрадиционными, с целью наиболее эффективного и экономного использования энергии. С одной стороны этому способствовало постоянное улучшение теплофизических свойств зданий, направленное на уменьшение потерь тепла, что снизило расход энергии на поддержание комфортных условий и сделало возможным применение низкотемпературного отопления с температурами не выше 55°С и холода с температурами 10-16°С (вход-выход) вместо традиционных 6-12°С от холодильной машины. С другой стороны - стремление использовать возможности утилизации энергии и нетрадиционные и возобновляемые энергетические технологии (солнечную энергию, тепло земли, воздуха, тепловые насосы), что поощряется (в том числе финансово) правительством Нидерландов.
Рисунок 1. Схема холодоснабжения здания (процесса)с помощью системы подземного аккумулирования тепла и холода |
В первых проектах упор делался только на аккумуляцию холода с целью охлаждения. Принципиальная схема приведена на рис. 1. Летом здание охлаждается холодом, саккумулированным в водоносном пласте, то есть система подземного аккумулирования заменяет холодильную машину. В течение зимы производится зарядка холодной скважины с помощью градирни или воздушного теплообменника. Для зимнего отопления используется традиционный котел. Такая схема применяется также и для охлаждения производственных процессов, где круглогодично необходим холод с температурой 10-18°С.
Рисунок 2. Схема тепло-и холодоснабжения на базе системы подземного аккумулирования тепла и холода,объединенной с системой центрального кондиционирования здания |
На рис. 2 представлен вариант более комплексной схемы, где система подземного аккумулирования объединена с системой центрального кондиционирования здания. Такая схема применима в зданиях, где охлаждение полностью (или почти полностью) осуществляется с помощью вентиляционного воздуха. В этом случае система подземного аккумулирования поставляет не только холод летом, но и часть тепла зимой, то есть количество сэкономленной энергии возрастает вдвое по сравнению со схемой на рис. 1. Камера обработки воздуха центрального кондиционера должна быть в этом случае несколько увеличена, поскольку температура охлаждающей воды от системы подземного аккумулирования несколько выше, чем от холодильной машины. В течение зимнего сезона в тот же центральный кондиционер подается вода из теплой скважины для (предварительного) подогрева вентиляционного воздуха и одновременной "зарядки" холодной скважины. Летом этот холод используется для кондиционирования, а вода из холодной скважины после подогрева в центральном кондиционере закачивается в теплую скважину.
Рисунок 3. Схема тепло-и холодоснабжения на базе подземного аккумулирования тепла и холода и теплового насоса |
На рис. 3 представлена наиболее комплексная схема, в которой зимнее отопление осуществляется с помощью теплового насоса. Тепловой насос использует низкотемпературное тепло из теплой скважины и повышает его потенциал до температурного уровня, пригодного для целей отопления (низкотемпературного). Одновременно заряжается холодная скважина. Как правило, тепловой насос дополняется пиковым отопительным котлом. На сегодняшний день оптимальной признана схема, где тепловой насос имеет мощность около 20-30 % от максимальной отопительной нагрузки, поставляя при этом около 80 % необходимого тепла.
В настоящее время в Нидерландах реализованы и успешно функционируют более 100 проектов с установками сезонного аккумулирования тепловой энергии в водоносных пластах, почти в каждом крупном городе построено несколько таких установок. Назначение большинства установок - аккумулирование зимнего холода с целью использования его летом для охлаждения вместо традиционных холодильных машин. Охладительная мощность в реализованных проектах составляет в среднем 500-1000 кВт, при такой мощности система наиболее рентабельна по сравнению с традиционной холодильной машиной. Почти в 60 % установок одновременно используется и аккумулированное в подземном слое низкопотенциальное тепло.
Что касается потребителей, то можно отметить, что в Нидерландах это преимущественно (более 40 % от общего числа проектов) большие офисные здания с площадью от 10 000 до 100 000 м2. Кроме того, это больницы, общественные здания (торговые центры, залы для выставок и конгрессов, терминалы аэропортов и т. д.), а также индустриальные и сельскохозяйственные объекты. Внедрение осуществляется как для нового строительства, так и при реконструкции уже существующих объектов. Некоторые примеры таких проектов приведены в табл. 2.
Таблица 2 Примеры реализованных систем аккумулирования тепловой энергии в водоносных слоях |
Следует отметить, что системы подземного аккумулирования тепла применяются также в Бельгии, Германии, Швеции, Дании и других странах.
Водоносный пласт как аккумулятор тепловой энергии
В качестве аккумулирующей среды используется грунт, а конкретнее - водоносные слои, состоящие из песчаных пород. Водоносные слои насыщены очень медленно текущей водой и имеют достаточную емкость и изоляцию для хранения тепловой энергии.
Схематически строение почв в Нидерландах можно представить как пористые слои, состоящие преимущественно из песка и гравия различной крупности, перемежающиеся менее проницаемыми для воды глинистыми слоями. За исключением нескольких верхних метров пористая среда заполнена водой, перемещающейся со скоростью 10-40 м/год. Природная температура на глубинах более 15 м составляет около 10-13°С и остается практически постоянной при сезонных колебаниях наружной температуры. Пригодность почвы для аккумулирования тепла и холода определяется несколькими факторами. Наряду с наличием водоносного слоя важны и его характеристики: высота, проницаемость и глубина залегания, скорость воды в водоносном слое. Кроме того, пригодность зависит от требующегося количества тепла и холода, так как один и тот же водоносный пласт может быть пригоден для небольшого проекта и не пригоден для крупномасштабного. При оптимальном выборе водоносного слоя и правильном проектировании потери тепловой энергии при аккумулировании составляют не более 5-15 %.
Конструктивные элементы и оборудование системы
Основным функциональным (и затратным) элементом системы является скважина. Пластиковая труба, помещенная в скважину, на глубине используемого водоносного слоя снабжена отверстиями для откачки и закачки грунтовой воды и фильтрами. В верхней части скважины располагаются погружные насосы, подсоединения закачивающих и откачивающих труб скважины к транспортирующим трубопроводам, средства контроля и управления. Транспортирующие трубопроводы прокладываются, как правило, неглубоко под землей. Теплообмен с системой тепло- и холодоснабжения объекта происходит в пластинчатом теплообменнике с температурным напором в 1-2°С. Таким образом, подземный контур отделен от наземного контура тепло-, холодоснабжения самого здания, что исключает вероятность загрязнения или ухудшения качества грунтовых вод. Система контроля и управления связана с системой регулирования тепловой нагрузки объекта. В большинстве систем дебит скважины регулируется в пределах от 20 до 100 % в зависимости от требуемой тепловой или холодильной нагрузки здания.
Экономия энергии и рентабельность
Экономия энергии и рентабельность систем подземного аккумулирования тепловой энергии в водоносных пластах определяется путем сравнения с традиционными системами, состоящими из отопительных котлов и холодильных машин.
Для систем холодоснабжения экономия энергии составляет до 75 %. Для холодильной нагрузки порядка 1000 кВт в климатических условиях Нидерландов это означает экономию около 150000 кВт·ч/год электроэнергии. Часовой расход воды, необходимой для обеспечения максимальной нагрузки, составляет при этом около 100 м3/ч.
Инвестиции на создание системы подземного аккумулирования тепловой энергии составляют порядка 250-400 Евро на 1 кВт холодильной мощности, включая систему автоматического контроля и управления, необходимые разрешения местных властей и так далее. Учитывая, что при этом отпадает необходимость в приобретении холодильной машины, дополнительные (по сравнению с традиционным вариантом) инвестиции в систему подземного аккумулирования тепла и холода незначительны, а в некоторых случаях подобная система даже дешевле традиционной. Чтобы установка была рентабельной, дополнительные инвестиции должны компенсироваться снижением эксплуатационных затрат, то есть меньшим энергопотреблением. В общем случае можно говорить о рентабельности установок подземного аккумулирования энергии при холодильных нагрузках 500 кВт и выше. Безусловно, определяющим фактором, влияющим на рентабельность, является глубина скважины.
Кроме вышесказанного, необходимо оценивать и экологические стороны применения систем подземного аккумулирования тепловой энергии. За счет снижения расхода первичной энергии уменьшается выброс вредных веществ, в том числе и парниковых газов, в окружающую среду. А за счет отказа от холодильных машин (или уменьшения их производительности) сокращается применение озоноразрушающих холодильных агентов.
В заключение следует отметить, что, учитывая энергосберегающую и экологическую ценность систем подземного аккумулирования тепла, это направление поддерживается как правительствами ряда стран, так и международными организациями, в частности IEA (International Energy Agency).
Кроме того, с целью координации работ в этом направлении и обмена информацией систематически проводятся международные конференции по этой тематике. Последняя VIII конференция по аккумулированию тепловой энергии TERRASTOCK прошла в конце августа 2000 года в Штутгарте (Германия). Следующая конференция состоится в Варшаве в 2003 году.
Литература
- Snijders A. L. Aquifer thermal energy storage in the Netherlands. Newsletter CADDET Energy Efficiency, Special Issue on the Netherlands, September, 2000.
- Proceedings TERRASTOCK 2000. 8th International Conference on Thermal Energy Storage. Stuttgart, Germany.
Статья опубликована в журнале “АВОК” за №3'2001
Подписка на журналы