ОЦЕНКА ТЕПЛОЗАЩИТЫ ЭКСПЛУАТИРУЕМЫХ ЖИЛЫХ ЗДАНИЙ ИЗ ГАЗОБЕТОННЫХ БЛОКОВ¹

С. В. Корниенко, канд. техн. наук, доцент ФГБОУ ВПО «Волгоградский государственный архитектурно-строительный университет»; Н. И. Ватин, доктор техн. наук, профессор, директор Инженерно-строительного института, заведующий кафедрой ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого» (ФГАОУ ВО СПбПУ); А. С. Горшков, канд. техн. наук, директор учебно-научного центра «Мониторинг и реабилитация природных систем» ФГАОУ ВО СПбПУ, главный технический советник проекта ПРООН-ГЭФ «Энергоэффективность зданий на Северо-Западе России»

Ключевые слова: здание, стены, автоклавный газобетон, газобетонные блоки, теплопроводность, термическое сопротивление, энергосбережение, энергетическая эффективность

Продолжаем анализ эффективности теплоизоляционных свойств стеновых изделий из автоклавного газобетона, широко используемых в строительстве зданий в России, начатый в [1, 2]. В типовых многоквартирных жилых зданиях (см. Справку 1), наружные стены которых выполнены из автоклавных газобетонных блоков с облицовочным каменным слоем, проведены натурные теплофизические испытания и тепловизионный контроль качества утепления. Предлагаем результаты исследования данных зданий, расположенных в Волгоградской области.

Основной конструктивной особенностью зданий является разделение функций несущих и ограждающих конструкций:

- Несущей основой исследуемых зданий является рамно-связевый сборно-монолитный каркас с плоскими дисками перекрытий, образованными многопустотными плитами. Последние в каждом перекрытии объединены монолитными железобетонными ригелями, скрытыми в плоскости перекрытий и опирающимися на сборные колонны. Для снижения потерь теплоты в холодный период года по наружному контуру ригели имеют перфорацию, выполненную по наиболее эффективной схеме 5/1 в виде отверстий, заполненных термовкладышами из пенополистирола.
- Теплозащитная оболочка состоит из различных видов ограждающих конструкций. Стены выполнены в виде кладки автоклавных газобетонных блоков с внутренней штукатуркой и снаружи облицованы кирпичной кладкой. Стены поэтажно опираются на диски перекрытий. Соединение кирпичной кладки с газобетонными блоками предусмотрено на гибких связях. Окна и балконные двери сделаны из ПВХ-профилей с заполнением однокамерными стеклопакетами. Перекрытие над техническим подпольем и чердачное перекрытие имеют теплоизоляцию.

Для повышения теплозащитных свойств оболочки в узлах сопряжений ограждающих конструкций по проекту предусмотрены термовкладыши из эффективных теплоизоляционных материалов.

Отопление зданий осуществляется централизованно от котельной (параметры теплоносителя 95/70 °C). Все здания имеют естественную вентиляцию. Приток воздуха обеспечивается через регулируемые створки окон, расположенных в помещениях жилых комнат и кухонь, удаление воздуха – через вытяжные вентиляционные каналы, предусмотренные в кухнях и санузлах. Для снижения в зданиях затрат энергии в технических подпольях установлены индивидуальные тепловые пункты. Инженерные системы зданий оснащены приборами учета тепловой энергии, расхода холодной и горячей воды, электроэнергии и газа.

На момент проведения теплотехнических испытаний продолжительность эксплуатации зданий составляет около 5 лет.

Методы оценки тепловой защиты зданий

Для оценки соответствия уровня тепловой защиты зданий действующим требованиям (см. Справку 2) были проведены натурные теплофизические испытания с применением

Здания построены в рамках региональной целевой программы по переселению граждан из аварийного и ветхого жилья.

Каждое из рассматриваемых зданий трехэтажное двухсекционное, имеет техническое подполье и чердак.

Проектным решением для строительства указанных зданий принята типовая серия Б1.020.1–7 («АРКОС–1»), разработанная в Республике Беларусь. Геометрические характеристики зданий:

Суммарная площадь ограждающих конструкций равна 2729 m^2 , в том числе:

наружных стен – 1 077 м²; окон, балконных дверей – 256 м²; чердачного перекрытия – 698 м²; перекрытия над техподпольем – 698 м². Отапливаемый объем – 6 073 м³. Показатель компактности здания – 0,449 1/м. Коэффициент остекленности фасадов – 0,192.

Здания эксплуатируются в условиях умеренно-континентального наружного климата России. Расчетное значение градусо-суток отопительного периода (Γ CO Π) = 3 925 K•сут./год.

HTTP://ENERGO-JOURNAL.RU/

экологически безопасных методов неразрушающего контроля:

- тепловизионный контроль качества теплоизоляции зданий;
 - определение фактического уровня теплозащиты зданий;
 - расчетная оценка уровня теплозащиты зданий.

Тепловизионный контроль качества теплоизоляции зданий

Цель тепловизионного контроля качества теплоизоляции рассматриваемых зданий – выявление температурных аномалий и дефектов теплозащитной оболочки зданий в натурных условиях.

Метод тепловизионного контроля качества теплоизоляции зданий основан на дистанционном измерении тепловизором полей температур поверхностей ограждающих конструкций и визуализации температурных аномалий для определения дефектов в виде областей повышенных потерь теплоты, связанных с нарушением теплоизоляции, а также участков внутренней поверхности ограждающих конструкций, температура которых в процессе эксплуатации может опускаться ниже точки росы.

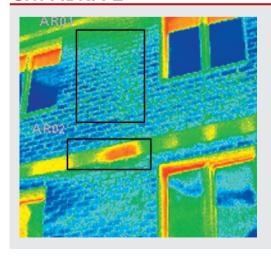
Тепловизионный контроль объекта проводился² с 14 января по 10 февраля 2015 года. На момент тепловизионного обследования все здания отапливались. Режим теплопередачи через ограждающие конструкции был близок к стационарному. Тепловизионное обследование выполнялось в дневное время при отсутствии ветра, атмосферных осадков, тумана и задымленности. В процессе измерений наружные поверхности оболочки зданий не подвергались воздействию прямого и отраженного солнечного облучения. Тепловизионные измерения проведе-

ны тепловизором марки FLIR SC660 (зав. № 404003616) с метрологическими параметрами, соответствующими нормативным требованиям.

В ходе тепловизионного контроля были выполнены:

- осмотр объекта контроля с помощью тепловизора для формирования общей характеристики объекта и выявления участков, подлежащих дальнейшему термографированию;
- обзорное термографирование наружных поверхностей ограждающих конструкций для выявления температурных аномалий;
- детальное термографирование выделенных участков внутренних поверхностей ограждающих конструкций для уточнения температурных аномалий.

В ходе тепловизионного обследования получено 186 откалиброванных термограмм, в том числе по наружной поверхности – 154, что является достаточным для получения статистически достоверных результатов.


Определение фактического уровня теплозащиты зданий

Для определения фактического уровня теплозащиты зданий проведены теплофизические измерения в натурных условиях.

Основной теплозащитной характеристикой ограждающей конструкции является способность ограждения оказывать сопротивление проходящему через него тепловому потоку, количественно характеризуемая сопротивлением теплопередаче R_s , м² • K/Bт.

Метод определения сопротивления теплопередаче в натурных условиях основан на измерении температур

СПРАВКА 2

Теплозащитная оболочка здания согласно СП 50.13330.2012 должна отвечать следующим требованиям:

- приведенное сопротивление теплопередаче ограждающих конструкций должно быть не меньше нормируемых значений (поэлементные требования);
- удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование);
- температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарно-гигиеническое требование).

34 ЭНЕРГОСБЕРЕЖЕНИЕ №6-2016

² Согласно ГОСТ Р 54852-2011 «Здания и сооружения. Метод тепловизионного контроля качества теплоизоляции ограждающих конструкций».

внутреннего и наружного воздуха, температур поверхностей ограждающей конструкции, а также плотности теплового потока, проходящего через нее (в условиях, близких к стационарной теплопередаче), по которым вычисляют значение искомой величины.

Определение сопротивления теплопередаче фрагментов ограждающих конструкций было выполнено³ в холодный период года при параметрах, указанных выше. Измерения выполнены многоканальным прибором марки ИТП-МГ4.03-10 «Поток» (зав. № 1177) с метрологическими параметрами, соответствующими нормативным требованиям. Измерения в указанных зданиях проведены в жилых помещениях квартир, в которые был обеспечен доступ специалистов. Выбор контрольных точек обусловлен программой измерений, а их количество ограничено возможностью доступа в помещения квартир. Контрольные точки располагались на характерных участках ограждающих конструкций, выявленных в ходе тепловизионного контроля, включая краевые зоны. Измерения производились в течение двух недель с интервалом регистрации параметров в 5 мин.

Сопротивление теплопередаче в точке теплозащитной оболочки здания определялось методом усреднения по формуле (1) (см. Расчетные формулы).

Расчетная оценка уровня теплозащиты зданий

Расчетная оценка уровня теплозащиты зданий наиболее точно может быть выполнена на основе приведенного сопротивления теплопередаче ограждающих конструкций по результатам расчета двух- и трехмерных температурных полей [3].

Расчетное приведенное сопротивление теплопередаче ограждающей конструкции определяется по формуле (2) [4] (см. Расчетные формулы). Расчетная оценка теплового режима ограждающих конструкций выполнена на основании математического моделирования процесса с применением программно-вычислительного комплекса «Энергоэффективность и тепловая защита зданий (ЭНТЕЗА)» [3], который позволяет на основе расчета трехмерных температурных полей оценить влияние краевых зон на теплозащитные свойства ограждающих конструкций и наметить пути совершенствования элементов оболочки зданий.

Результаты натурных теплофизических испытаний исследованных жилых зданий из газобетонных блоков и их оценка будут представлены в следующем номере журнала «Энергосбережение».

РАСЧЕТНЫЕ ФОРМУЛЫ	
Нумерация формулы в тексте	Формула
(1)	$R_0 = \frac{\sum_{i=1}^{n} (t_i^{int} - t_i^{ext})}{\sum_{i=1}^{n} q_i} \text{(согласно} $
(2)	$R_0^{red} = \frac{(t_{int} - t_{exp})A}{Q_{bas} + \sum_{i=1}^{m} Q_i^{ad}}$

Обозначения в формулах

 $R_{\rm o}$ – сопротивление теплопередаче ограждающей конструкции, м² • K/Bт

n - число измерений

 $t_{\rm i}^{\rm int},\ t_{\rm i}^{\rm ext}$ – соответственно температура внутреннего и наружного воздуха при і-м измерении

 q_i – плотность теплового потока при i-м измерении

 R_0^{red} – расчетное приведенное сопротивление теплопередаче ограждающей конструкции

 $t_{_{
m int}}$ – расчетная температура внутреннего воздуха здания $t_{_{
m ext}}$ – расчетная температура наружного воздуха в холодный период года

А – площадь ограждающей конструкции по внутреннему контуру

Q_{bas} – основной тепловой поток через ограждающую конструкцию при расчетных условиях

т – число краевых зон в ограждающей конструкции

 Q_i^{ad} – добавочный тепловой поток через і-ю краевую зону, определяемый по температурному полю

Литература

- 1. Горшков А. С., Ватин Н. И., Корниенко С. В., Пестряков И. И. Соответствие автоклавного газобетона современным требованиям по тепловой защите зданий // Энергосбережение. 2016. № 2.
- 2. Горшков А. С., Ватин Н. И., Корниенко С. В., Пестряков И. И. Соответствие автоклавного газобетона современным требованиям по тепловой защите // Энергосбережение. 2016. № 3.
- 3. Корниенко С. В. Многофакторная оценка теплового режима в элементах оболочки здания // Инженерно-строительный журнал. 2014. № 8 (52).
- 4. Корниенко С. В. Повышение энергоэффективности зданий за счет снижения теплопотерь через краевые зоны ограждающих конструкций // Academia. Архитектура и строительство. 2010. № 3. ■

HTTP://ENERGO-JOURNAL.RU/

³ По методике ГОСТ Р 54853-2011 «Здания и сооружения. Метод определения сопротивления теплопередаче ограждающих конструкций с помощью тепломера».